## Exercise 1.61

The density of air at ordinary atmospheric pressure and $25^{\circ} \mathrm{C}$ is $1.19 \mathrm{~g} / \mathrm{L}$. What is the mass, in kilograms, of the air in a room that measures $14.5 \mathrm{ft} \times 16.5 \mathrm{ft} \times 8.0 \mathrm{ft}$ ?

## Solution

To obtain the mass, multiply the density by the volume of the room.
Mass $=$ Density $\times$ Volume

$$
\begin{aligned}
& =\left(1.19 \frac{\mathrm{~g}}{\mathrm{~L}}\right)(14.5 \mathrm{ft} \times 16.5 \mathrm{ft} \times 8.0 \mathrm{ft}) \\
& =\left(1.19 \frac{\mathrm{~g}}{\mathrm{~L}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left[14.5 \times 16.5 \times 8.0 \mathrm{ft}^{3} \times\left(\frac{12 \mathrm{ing}}{1 \mathrm{ft}}\right)^{3} \times\left(\frac{2.54 \text { ¢gt }}{1 \text { in }}\right)^{3} \times \frac{1 \mathrm{~mL}}{1 \times \frac{\mathrm{m}^{3}}{}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{mt}}\right] \\
& =\left(1.19 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(14.5 \times 16.5 \times 8.0 \times 12^{3} \times 2.54^{3} \times \frac{1}{1000} \mathrm{~L}\right) \\
& \approx 64 \mathrm{~kg}
\end{aligned}
$$

